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ABSTRACT

A-priori boundedness results for solutions of strongly coupled semilinear

parabolic systems of second order under homogeneous linear boundary conditions

are established. In contrast to [1], 121, [4] it is not supposed that the

diffusion operator is self-adjoint or that the nonlinearity is of gradient-

type.
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I

SIGNIFICANCE AND EXPLANATION

The prototype parabolic partial differential equation is the heat

conduction equation. This paper deals with systems of parabolic equations.

Such systems occur in many contexts in addition to heat conduction, e.g.

biology, in nuclear reactor techniques, in economics, etc.

Let the n-vector u denote the (unknown) solution of a system of n

parabolic partial differential equations. An important question in the study

of these systems is the boundedness of u. Many techniques and criteria have

been developed to solve this problem if the system is weakly coupled, i.e. if

the kth equation contains second order space derivatives of only uk , the kth

component of u. If this is not the case, the system is said to be strongly

coupled.

In the present paper for a broad class of strongly coupled parabolic

systems pointwise boundedness of the solution u is established. ( .

Accesiofl ForNTIS CRA&I
)DTIC TAB "

--- A.. .ability Co,.

ai' IloW
Dist )eCI.,

The responsibility for the wordinq and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

. . . + .- . , .

"_ , .Z . .. . ' .' :. + , '.- -_ . .. . - .. . . ... -o - . - . . . . . .. . . -*.. .. .. . . . . . • *. .*. . ,- , , , . . . . .



7. - 7

POINTWISE A-PRIORI BOUNDS FOR STRONGLY COUPLED

SRMZLINEAR PARAROLIC SYSTEMS

Reinhard Relinqer

1. We consider strongly coupled semilinear parabolic systems of the form

uk 3 Ia'3uJ k1 au I k txu(W t- TV i, ,x i Tx

for 0 < t < T , x c n , k 1,2,...,n-

under homogeneous linear boundary conditions. Here u - (uI,....un), n is a bounded

domain in IF' and 0 < T s o. It is the purpose of this paper to establish pointwise

a-priori bounds for solutions u of (1). The same problem has also been treated by

Cosner [41, Alikakos [1, 43 and Amann [2, 471. In contrast to these authors, we do not

suppose that f is a gradient or that the matrix aij) satisfies any symmetry

conditions. Our main result is stated in section 2. Section 3 contains some examples.

2. let nl C JP be a bounded domain whose boundary 3l is a Cm-l)-dimensional C2 -manifold

such that n lies locally on one side of an. Let 0 < T 4 . and set J - (0,T) with

Jo (0,T). We wish to study the system of equations

k k
(2) ut  L (tx)u + f (txu) for t J, x 4 n, k 1,2,...,n

where u- (ul,...,un), k . auk/at f : J x n x IF p It is a given measurable function

and

L k (tx)u3 Y (at(t'x)D u I
) + T al (tx)DuI

j ij*o i + ii,j , Lot

*with Di =a/aia. Summation in i,j is from I to a and in ki from I to n. The

*coefficients of Lik are assumed to satisfy the following smoothness conditions: For all

i, J, k, I the partial derivatives Dj a k exist in JOx 0 and a k1 D a kt, ai are

bounded continuous functions in J0 0 . Moreover, these functions are 1(61der continuous

of exponent ui in t for some 0 < u 4 1, uniformly with respect to x C a. Also, the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the
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.. c aon are uniformly continuous in x with a modulus of continuity independent

of t f J0 , and there is a function c t J0 + (0, ) such that

(3) a k (tux)qc k Ioc(t) (qk)2  in J x for all .C
ijk,Z J,k

we will show at the end of the paper how condition (3) can be relaxed.

We assume that u satisfies Dirichlet boundary conditions, WE

(4) u 0 on j x an

However, if the coefficients of Lk for all k are independent of t, then we also admit

boundary conditions of the form (k - 1,2,...,n)

(5) 1. aJD + (-yklu k
+ 6k bCk'x)uf = 0 on J x 3 .

i#1ii ii,j,t £

*.- Here kf C(afn,{0,11), y , (y1.... y") denotes the outer normal to an and the bk  are

. continuously differentiable functions on an satisfying

(6) knkbki a n ) 0 on an for all n c Fn
kj

w

" Of course, (4) is a special case of (5).

Let X - LP(n,TI), 2 < p < -, with 1.E denoting the usual norm. For t J0
'p0

define the operator A(t) - D(A) C X + X by ,."

A(t)u E(Ll(t,').....Ln(t,'))u + du , u D(A)

with d_ ) 0 a real constant and

D(A) - {u c W2',(gUn ) , u satisfies (4) or resp. (5)}

-. Wote that D(A) is independent of t. If we wish to stress the fact that A(t) and X

depend on p, we will write A p(t) and No in the sequel.

D(A) is dense in X, the A(t) are closed operators and, provided dp is chosen

'* sufficiently large, we have

I(A(t)+X)- I Mp (1+j j)-1 for all t c Jo t Re A ) 0

with a constant Mp independent of t, ) (I. denotes the norm in L(X), the space of

bounded linear transformation on X). For proof see [5]. Furthermore, our assumptions

imply that there are constants K, P > 0 such that

I(A~t) -A(s))A- (Ill C Klt-slU F to 5, T C £

".:
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I 'a

and

IA(t)A-
1
(s)I ( P , ta C JO

Hence, for each t e J0 , A~t) generates an analytic semigroup exp(-sA(t)), a ) 0, and

the fractional power A(t) of A(t) for any C > 0 can be defined as the inverse of

A -0 (t) e [(a)t a 0d

(see [9)). Set XOL D(A), A - A(0), with norm Ixl - IAxi for x 2 . We then hive

the continuous imbedAinqs [6, 41.61

(7a) 30 - x for m/p < 2-m/q, q > p
p q

(7bI ) C(flf,fn for 0 ( v < 2.,/p
p

Finally, denote by W(t,s), a ( t C Jo the linear evolution system generated by the

operators At), [91. Then there is a 6 > 0 such that for any 0 4 0 4 a C 1 we have

(8) 1AL a(t)W(t,s)A4 (s)l C C(t-8a)S0e (t- s ) , a 4 t 4 00

with a constant C - C(QO) independent of a, t. If the operators A(t) are independent

of t, then W(t,s) - exp(-(t-s)A) and the estimate (8) is well-known [9, ;21. In the

time-dependent case a detailed proof of (8) is given in [8e.

Equations (2) with (4) or (5) can be summarized in the abstract equation

(9a) ut + A(t)u - F(t,u) , t f j

where

F(t,u) ft,',u) + du

Together with

(9b) u(O) - u0 C X

(9) describes an initial value problem in X. Let us assume that f satisfies the

following condition:

(10) There are constants 0 < 6, 0 4 1 such that for any R > 0 we have

lf(t,x,v) - f(s,x,w) c(It-s + tv-wI0 )

for all t, a c J0 , x c C, v, w e TO with a constant C - C(R).

It then follows from [9, Sect. 2.51 that the initial value problem (9) has a local solution

*u C C( 0 , rJN) C~ C((DT],X,) defined on some interval 0 -C t 4 T, provided uO c .

-3- -.
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,A,

for some 0 > m/2p. Moreover, we have u e C(O,T],) for any 0 < a < 0 and -

u(t) C D(Ap) for 0 < t C 1. We wish to establish a time-dependent bound for u in

By 19, p. 57] this is sufficient to prove a global existence theorem. '4

Thus, let u e C(3 01 X") r CI(3'X p) denote from now on a fixed solution of (9) in XP

obtained by the method of proof used in [9, Sect. 2.5]. We assume that p - 2 in case

m < 4 and that p > m/2 otherwise.

For t eJO let

O(t) sup{CI (a i (t'x)] '/ x CQ
iand set i

a(t) -up( I v a (t)w L v, V £ R. lvv V e jr 1"-"
kL

with I" I denoting the Euclidean norm in le. . define

20k 0

and introduce the followinq hypotheses:

(VI) There is a continuous function * s JO x 1O,-) + It such that

k u l(tx.u)di 4 *(t,V) in j .

(V2) The maximal solution ymax of the ordinary differential equation

ta(t)
yt "(t,y) + y, y(O) -V(O)

with c given by (3) exists on Jo and is bounded.

(V3 ) There are constants C 0 0, r P I such that

0iflt,x,z)I C C0(1 + iZir) for t £ J, x c fl, z c t ''

Theorem. Let u be a solution of (9) in X as described above and assume uO c D(Ap).

Let hypotheses (VI) , (V2 ) and (V3 ) with r < I + 4/a be satisfied. Then, for any < 1,

ult) is bounded in uniformly on Jo. In particular, ult) is uniformly bounded in

-4-
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Remarks (i) Assume that f satisfies (10) and that u0 c for some 0 > m/2p. (This

I holds, if u 0 e Cv( f, f) for some v > 0 with uO - 0 on )fl for all k with 6 k = 0

in (5).) Then (9) will have a local solution u in X. As noted above, u(t) c D(Ap)

% for t > 0. We can thus use the assertion of the theorem to prove that this solution is -e

global. However, in this case the initial condition on y in (V2) has to be replaced by

y(0) - V(0) + e, where C > 0 is arbitrarily small.

(ii) Uniform a-priori bounds on u in Lr(flR n
) with f satisfying (10) have also been

obtained by Cosner (4] and Alikakos (1, 43] for the time-independent system (2) under

Oirichlet boundary conditions and by Amann (2, 47] for the boundary value problem (2),

(5). (In the last paper, time-dependent boundary conditions and higher order elliptic

Systems are also considered.) The bounds on r used in these papers are les restrictive

than the one stated above. However, all these authors impose severe structure conditions

on the system (2)z It is assumed that - aki -aii in JO for all i, J, k, I

and that f is of the form f - q+h, where g satisfies a linear growth condition and

h is a gradient, h - grad, H(xu). No such conditions are needed in the above theorem.

(ill) As the following proof shows it suffices to require c(t) ) 0 on i0 in (3) in

case a(t) - 0 on JO.

Proof of the theorem. We first establish a time-independent bound for u on J0 in X2"

In fact, since u C C
1
(jx 2 ), we get for t C j

u
k 

k
dV/dt - uf

k t

S,, D (aL 0u) + a V DiuL + f }k
ic iijL i

k p -I

Py partial integration the first summand is equal to

-5- E..



fan I u k akX 0 u f" kak

.~~~~~~ o-bkt In Ijul - c  ) fnfn ul- k ai 6 D
, a i

S2- v + f f Igrad 12 .

.4.t

c(t) fn ~ IDJUkI -c(t) f!rdi ~

where we have used (3) and (6). Also ..

1 Lt)..---a-t)-V(t) + c(t) fI grad ul2

2 c(t)n

*Summing up and using (VI) we thus get

dV/dt 4 *(t,V) + 1 (t) V in J .
2 c(t)

Rut this implies V 4 yax in J0 , where ymax is defined in (V2 ). Hence V is bounded

in J0, i.e. u is bounded in X2 , uniformly on j0i

Since u is a solution of (9) in X2, it follows in particular that u satisfies

in X2 the integral equation

(11) u(t) -(t,O)u 0 + ft (t,s)F(s,u(s))ds , t C Jo

By (V3) and (7a) we have

IF(su(s)) 2 4 C 1(1 + lu(s)Ir,2)

( I + ,u(,),r)
2 C9

for any 0 > m(r-1)/4r with constants C1 , C 2  independent of s c J. We now make use of

the inequality

Oul (lul" Nu v for u e, 0 < <0
al ,2 B 2

where v = I - i/8 and C - C(C:,B) is a certain constant (see (9, (1.55)]). This gives L.

(12) IF(s,u(s))I , C (1 + lu(s)l3(1
-
)) for a C J

,2 3

with 8 a arbitrary and constant C3. We choose 8 in such a way that

(13) a < 8 < 1 and r(1-v) < 1

This is equivalent to ra < < ( 1, i.e. to m(r-I)/4 < B < 1. Since r < 1+4/m, such a

. ~-6-"-.
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hoice is possible.

Define Z(t) - lu(t)IB. Using [9, (1.68)] one can show that z C C(J0 X2 ). Further,

for t C J we have

4 -St-S) r(1-vi)
(14) Z(t) C C4 u0 I + C C(t-8) e0 ts (1 + z (s))ds

by (8) and (12) with constants C4 , C5  independent of t, e and arbitrary B < <1.

Here, use is made of the estimate

IA A tl-I 4 Const. for B < B, t C J O

which can be proved as [9, (1.59)].

But r(l-v) < 1 by (13) and hence (14) implies that z(t) 4 S in Jo for some

constant S. In case m < 4 this establishes the assertion of the theorem.

In case m ) 4 we choose 8 close to I and apply (7a). It follows that u(t) is

bounded in uniformly on 3 O, for any q > 2 satisfying I/q > - - 2/m. We can

choose q - ql > 2r. Consider (9) in x with p, - ql/r. Then F(s,u(s)) for s JO'
p1I

is bounded in K.I by (V3 ) and using (11) it is easy to see that Iu(t)l, is bounded
1PI

on JO for any 0 4 B < 1. Thus, again by (7a), u is bounded in 2 for any q2 ) P1
Xq2

satisfying 2 + m/q2 > m/pl. Repeating this reasoning we get two sequences (qv 1  (p,)

with

q V
- m <2 

S"-' %+ ' -1 p

where q > 2r, I/q1  - 2/m and m ) 4. It follows that after finitely many steps we

can choose p - p > m/2. This proves the theorem.

3. Examples. a) Consider the system

2ut ANu P AV V 2 Y u

v= -2 Au + 1Av + uV - Y2 v

under boundary conditions (5). Let X, U, Pi, P2, Y1  y2  be real constants with

2 2
X, U, Y 10 Y2 

> 0 and 4 1v > (PI 
+ 

0
2  

Since g(u,v) - (-v ,uv) is not a gradient and

-7-
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since we do not assume 01 = P2, the results in [1], (21 and (41 cannot be applied to

(15). To prove global boundedness for solutions of (15) one could also try to use

comparison methods (31, (101. However, apart from the structure of the nonlinearity in

(15) this method will only be available if we additionally assume that 01 -02 - 0 or %

that 4p 102 + (X-u)
2 

> 0. In this case, possible candidates for invariant sets are sets

which at each boundary point have their normal vectors equal to left eigenvectors of the

diffusion matrix (see [31). But on the boundary of any such set (at least for small yi.

there are points at which the nonlinearity in (15) does not point inward. Hence this

method also cannot be applied to (15).

On the other hand, it is easy to see that (VI ) is satisfied with O(tV) - -2yv, y 

min(Y1 ,Y 2 ). Making use of the theorem we thus see that for any smooth initial data (15)

will have a bounded solution existing for all time provided the space dimension m is

1, 2 or 3. Note that Ymax * 0 as t + and hence u, v + 0 as t +

6) Let 1 - (0,L), L > 0 and consider

3
u - u + 3v + v " U
t xx XX

(16)

v 1 v + u - v
t xx

with ux - vx  0 on 30. Since the diffusion matrix A - 3O I) is not symmetric, the

hypotheses in (1], [2] and (41 are not satisfied. Comparison methods cannot be applied to

(16), since A cannot be brought into diagonal form. Also, A is not positive definite,

and hence condition (3) is not satisfied.

Define w = z u = v. This gives

33 wt-wxx +zxx 3 9.

(17)

zt = z + 3w - 3
t xx "

with wx - - 0 on an. For the transformed boundary value problem, all assumptions of

section 2 are satisfied. In particular, we can choose

*(t,V) -L- V 2V
2
/L

. . • ..

. . .
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Hence (17), and thus (16), has a global solution for any smooth initial values.

The transformation used in the last example indicates a way to get rid of condition

(3). It is only np:essary to assume that there are positive constants Tk such that,

with uk  replaced by wk - Tkuk, the transformed boundary value problem (2), (5)

satisfies the assumptions of the theorem. In essence, this leads to the following problem:

Let A be a real (nxn)-matrix. Give sufficient general conditions on A under which

there exists a diagonal matrix D - (d, ...,dn) with positive di such that DA is

positive definite.

For n 2 the answer can be given readily, but for higher dimensions the problem

seems to he rather difficult. A recent discussion of this question and some results can be

found in .

-9-
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